注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

王生的博客

 
 
 

日志

 
 

小学三年级奥数:找规律(一)  

2010-09-08 17:31:17|  分类: 默认分类 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

  这一讲我们先介绍什么是“数列”,然后讲如何发现和寻找“数列”的规律。

  按一定次序排列的一列数就叫数列。例如,

(1) 1,2,3,4,5,6,…

(2) 1,2,4,8,16,32;

(3) 1,0,0,1,0,0,1,…

(4) 1,1,2,3,5,8,13。

  一个数列中从左至右的第n个数,称为这个数列的第n项。如,数列(1)的第3项是3,数列(2)的第3项是4。一般地,我们将数列的第n项记作an。

  数列中的数可以是有限多个,如数列(2)(4),也可以是无限多个,如数列(1)(3)。

  许多数列中的数是按一定规律排列的,我们这一讲就是讲如何发现这些规律。

  数列(1)是按照自然数从小到大的次序排列的,也叫做自然数数列,其规律是:后项=前项+1,或第n项an=n。

  数列(2)的规律是:后项=前项×2,或第n项

  数列(3)的规律是:“1,0,0”周而复始地出现。

  数列(4)的规律是:从第三项起,每项等于它前面两项的和,即

  a3=1+1=2,a4=1+2=3,a5=2+3=5,

  a6=3+5=8,a7=5+8=13。

  常见的较简单的数列规律有这样几类:

  第一类是数列各项只与它的项数有关,或只与它的前一项有关。例如数列(1)(2)。

  第二类是前后几项为一组,以组为单元找关系才可找到规律。例如数列(3)(4)。

  第三类是数列本身要与其他数列对比才能发现其规律。这类情形稍为复杂些,我们用后面的例3、例4来作一些说明。

例1 找出下列各数列的规律,并按其规律在( )内填上合适的数:

(1)4,7,10,13,( ),…

(2)84,72,60,( ),( );

(3)2,6,18,( ),( ),…

(4)625,125,25,( ),( );

(5)1,4,9,16,( ),…

(6)2,6,12,20,( ),( ),…

解:通过对已知的几个数的前后两项的观察、分析,可发现

(1)的规律是:前项+3=后项。所以应填16。

(2)的规律是:前项-12=后项。所以应填48,36。

(3)的规律是:前项×3=后项。所以应填54,162。

(4)的规律是:前项÷5=后项。所以应填5,1。

(5)的规律是:数列各项依次为

  1=1×1, 4=2×2, 9=3×3, 16=4×4,

  所以应填5×5=25。

(6)的规律是:数列各项依次为

  2=1×2,6=2×3,12=3×4,20=4×5,

  所以,应填 5×6=30, 6×7=42。

  说明:本例中各数列的每一项都只与它的项数有关,因此an可以用n来表示。各数列的第n项分别可以表示为

(1)an=3n+1;(2)an=96-12n;

(3)an=2×3n-1;(4)an=55-n;(5)an=n2;(6)an=n(n+1)。

  这样表示的好处在于,如果求第100项等于几,那么不用一项一项地计算,直接就可以算出来,比如数列(1)的第100项等于3×100+1=301。本例中,数列(2)(4)只有5项,当然没有必要计算大于5的项数了。

例2 找出下列各数列的规律,并按其规律在( )内填上合适的数:

(1)1,2,2,3,3,4,( ),( );

(2)( ),( ),10,5,12,6,14,7;

(3) 3,7,10,17,27,( );

(4) 1,2,2,4,8,32,( )。

解:通过对各数列已知的几个数的观察分析可得其规律。

(1)把数列每两项分为一组,1,2,2,3,3,4,不难发现其规律是:前一组每个数加1得到后一组数,所以应填4,5。

(2)把后面已知的六个数分成三组:10,5,12,6,14,7,每组中两数的商都是2,且由5,6,7的次序知,应填8,4。

(3)这个数列的规律是:前面两项的和等于后面一项,故应填( 17+27=)44。

(4)这个数列的规律是:前面两项的乘积等于后面一项,故应填(8×32=)256。

例3 找出下列各数列的规律,并按其规律在( )内填上合适的数:

(1)18,20,24,30,( );

(2)11,12,14,18,26,( );

(3)2,5,11,23,47,( ),( )。

解:(1)因20-18=2,24-20=4,30-24=6,说明(后项-前项)组成一新数列2,4,6,…其规律是“依次加2”,因为6后面是8,所以,a5-a4=a5-30=8,故

  a5=8+30=38。

(2)12-11=1,14-12=2, 18-14=4, 26-18=8,组成一新数列1,2,4,8,…按此规律,8后面为16。因此,a6-a5=a6-26=16,故a6=16+26=42。

(3)观察数列前、后项的关系,后项=前项×2+1,所以

  a6=2a5+1=2×47+1=95,

  a7=2a6+1=2×95+1=191。

例4 找出下列各数列的规律,并按其规律在( )内填上合适的数:

(1)12,15,17,30, 22,45,( ),( );

(2) 2,8,5,6,8,4,( ),( )。

解:(1)数列的第1,3,5,…项组成一个新数列12,17, 22,…其规律是“依次加5”,22后面的项就是27;数列的第2,4,6,…项组成一个新数列15,30,45,…其规律是“依次加15”,45后面的项就是60。故应填27,60。

(2)如(1)分析,由奇数项组成的新数列2,5,8,…中,8后面的数应为11;由偶数项组成的新数列8,6,4,… 中,4后面的数应为2。故应填11,2。

  

 练习

  

  按其规律在下列各数列的( )内填数。

  1.56,49,42,35,( )。

  2.11, 15, 19, 23,( ),…

  3.3,6,12,24,( )。

  4.2,3,5,9,17,( ),…

  5.1,3,4,7,11,( )。

  6.1,3,7,13,21,( )。

  7.3,5,3,10,3,15,( ),( )。

  8.8,3,9,4,10,5,( ),( )。

  9.2,5,10,17,26,( )。

  10.15,21,18,19,21,17,( ),( )。

  11.数列1,3,5,7,11,13,15,17。

(1)如果其中缺少一个数,那么这个数是几?应补在何处?

(2)如果其中多了一个数,那么这个数是几?为什么

  评论这张
 
阅读(1072)| 评论(1)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017